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Quantization of waves in dispersive media with application 
to nonlinear interactions of plasmons 

J ASKNE 
Research Laboratory of Electronics, Chalmers University of Technology, 
Gothenburg, Sweden 

MS received 2 May 1972 

Abstract. Waves in a general dispersive medium represented by a quadratic or bilinear 
Lagrangian are quantized. A phenomenological method is used leading to medium excita- 
tions in terms of quasiparticles (bosons) which are photon-like, phonon-like etc. The possi- 
bility for negative energy excitations is considered and interactions between different wave 
types studied. The simplicity of the analysis is demonstrated by an analysis of nonlinear 
interactions in a multistream medium of plasmons. 

1. Introduction 

The normal procedure to quantize wave motion in a material medium, is to  consider the 
different waves or oscillations in the material medium separately and to diagonalize the 
total Hamiltonian, see for example Hopfield (1958), Fukai and Harris (1971). The other 
possibility is to introduce the phenomenological constants, such as E and p for electro- 
magnetic waves, which in the dispersive medium are functions of frequency and wave- 
length. Furthermore we then consider field quantities which are averaged over volumes 
containing a large number of particles. Such a method should be useful particularly 
when we consider interaction between two complicated systems each described by their 
phenomenological constants. 

The phenomenological method has been applied in the electromagnetic, nondis- 
persive case by Jauch and Watson (1948) and Kong (1970), and applied to Cerenkov 
radiation, while Alekseev and Nikitin (1966) studied the electromagnetic field in a 
nonmagnetic dispersive medium with application to the radiation from an impurity 
atom. This method has recently been of value in studies of linear and nonlinear inter- 
actions in plasmas (Harris 1970). Even though for classical plasmas one may finally set 
Planck’s constant equal to zero the use of quantum methods turns out to be quite useful. 
Applications of quantized wave motion are also given by Louise11 et al(1961) and Musha 
(1964). 

In this article a general dispersive medium represented by a quadratic or bilinear 
Lagrangian of general form is assumed and the solutions are expanded in wave modes. 
This leads us to a description of medium excitations in terms of quasiparticles of boson 
type (photons, phonons, plasmons, magnons etc). Due to interaction between different 
wave types we may rather speak of photon-like, phonon-like, etc excitations. Particu- 
larly the quantization of negative energy excitations will be considered. As we will 
allow for negative frequencies we will rather speak of negative action waves (action = 
energy divided by frequency). Although negative energy waves have been quantized in 
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some special cases (cf Jauch and Watson 1948, Harris 1970, Musha 1964) a general 
theory does not seem to have been given. It is shown to be convenient to introduce 
creation and annihilation operators with different commutation rules for positive and 
negative action waves, resulting in a compact notation for an interaction analysis. As an 
illustration of the method wave motion in a multistream medium is considered as well 
as the weak nonlinear three wave interaction. 

It should be remarked that instead of starting from the Lagrangian the present method 
will allow us to start directly from the differential equations (see Appendix). 

2. Description of a dispersive medium 

A classical system is quantized via the Lagrangian and Hamiltonian formalism. In the 
case of a disturbed system the Lagrangian density L is a function of the generalized 
coordinates qi and the first order time and space derivatives of q i ,  that is 

L ( q i , -  2,:) - . 
When the Lagrangian is known we can obtain all information about the system by means 
of the principle of least action 

6 1 1 L d z d f  = 0 

which yields the differential equations 

The characteristic feature in a description of a dispersive medium is that some (or all but 
one) of the coordinates are eliminated and the effective medium parameters are frequency 
and/or wavelength dependent. In order to do this we expand the coordinates in mono- 
chromatic wave solutions with periodic boundary conditions over unit length 

+m 
qi(t, z) = 4 2 (Qi,k eikr + Qlk  e-ikZ). 

k = - m  
(4) 

The reality condition is 

Q .  I,k = Q ?  I ,  - k ( 5 )  

Furthermore, we assume that the amplitude Qk depends on time t through the factor 
exp( -io,t), where ok = o ( k )  is a relation to be determined later. Up to that point wk 
and k are considered as independent variables. In the Appendix we have shown that if 
we assume a quadratic or bilinear Lagrangian of general form and eliminate all 'co- 
ordinates' but one, denoted q(t,z) we obtain after integration over unit length for 
ok = - 0 - k  and wk real 
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The corresponding expression for the momentum 

p ( t ,  z) = 3 (pk eikz + P: e-ik') 
k 

is 

We then obtain for the Hamiltonian and wave momentum 

or 

with 

( 1  1) together with (8) yields the canonical equations 

(7) 

if 

p k ( U k r  k )  = 0. (14) 

(14) yields the dispersion relation wk, j  = w,(k), where j denotes the jth solution. We 
observe that (14) always yields two identical sets of solutions. The usual one is wk,j > 0 
for k > 0. In the preceding expressions a summation over both sets is implied. 

3. Quantization 

The system is now quantized by replacing the coordinate and momentum determined 
by the canonical equations with noncommuting operators. For the boson fields the 
commutation relations then are 

(15) [QG, ' k ' j ]  = ih 8 k k r  [ Q k j '  PLjI = ih 8 k k '  

where a summation over the two identical o k J  solutions is implied. It may be remarked 
that the same commutation rules are obtained if Pk is replaced by akPk at  the same time as 
Qk is replaced by (ak)- 'Qk, where ak is a c number. 
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We observe that the sign of a5!Jaok may be negative and this is the case which is 
denoted negative action waves (action = energy divided by frequency). This is the 
same as negative energy waves when the frequency is positive. (For convenience we will 
include positive as well as negative frequency solutions in this paper.) It is well known 
(Sturrock 1960), that negative energy waves are obtained for example in systems with 
drifting charge carriers. In such systems we have a certain energy associated with the 
constant motion of the beam. This energy is respectively increased or decreased if a 
positive or negative energy wave is excited. We introduce 

and the creation and annihilation operators may be defined by 

The commutation relation is according to (15) 

[ a k , j ,  a g j . 1  = s k , j  hk,k' d j , j ' .  

In the following expressions we only sum over one of the two identical w k , j  solutions as 
remarked after (14) 

The time dependence of ak is given by Heisenberg's equation of motion 

(21) aa, j 
ih- = L a k , j ,  = hwk, jak , j  at 

that is, the time dependence of a k , ,  is independent of S k , ,  , which is convenient in analysing 
linear and nonlinear interactions. 

The roles of creation and annihilation operators are interchanged when sk change 
sign as a creation of a negative quanta means an annihilation of energy. This is described 
by table 1. 

Table 1. 

s k =  + 1  s k =  - 1  
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4. Applications 

The analysis will, for illustration, first be applied to some well known nondispersive 
problems. The results are summarized in table 2. 

Table 2. 

Problem Lagrangian 

Harmonic 
oscillator t ( t ,  2 )  = $ m i 2  -+gx2 

u(oj = m u 2  - g 

Coupled 
oscillators 

The next application will be longitudinal electromagnetic waves (plasmons) in a plasma 
system with an arbitrary number n of electron streams (velocities u0J. With the scalar 
potential denoted 4 and the electron oscillation amplitudes qi  we obtain 

Variation with respect to the variables we want to eliminate, that is qi ,  yields relations 
between qi  and 4. We then obtain 

with osi = N,e;/m,c,, . The dispersion relation yields 2n solutions of positive and negative 
energy waves. The scalar potential is quantized according to 

We will now consider the nonlinear interaction between three quasimonochromatic 
waves as exemplified by plasmons. The nonlinear correction to the Lagrangian (22) is 

and we have HNL = -LNL. The earlier treatment is now generalized by assuming a 
slowly varying time dependence of the amplitudes besides the fast, linear variation 
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exp( - im,t). If we neglect correction terms including derivatives of the slowly varying 
amplitudes we can still use (19) and we can write the Hamiltonian in the general form 
(after simplification of notation) 

H(t) = C + s j h ~ j ( a j a f  + u ~ u , ) + ~ ( I c u ~ u ~ ~ ~ + I c * u : u : u : ) .  (24) 
i 

We have only included interaction terms which are resonant when 

~ 1 + 0 2 + ~ 3  = 0 

k l + k z + k 3  = 0. 

s, = s* = s3 = I -si = s* = SI = I -s,=-s* = SI = I 

Figure 1. Three types of diagrams may illustrate the various processes which are associated 
with (25).  

Heisenberg’s equation of motion now yields 

aa 1 - = - iwla l - i s l~*a~a: .  
at 

The result for a2 and a3  is simply obtained by permutation of index. In the case of plas- 
mons we obtain 

which is in agreement with the nonlinear coefficient derived by Wilhelmsson (1969), 
where a normal-mode analysis of the differential equations is used. The result agrees 
as well with the special case i = 1,2, treated by Fukai and Harris (1971). The complica- 
tions in dealing with the canonical transformations even in the two stream case (Fukai 
and Harris 1971) are effectively avoided by the present method. 

Although the amplitudes akj are linearly related to observables such as the electric 
field, higher order correction terms may be included in the analysis and will then result 
in higher order derivatives of aj  in the left hand side of (26) jcf Askne 1972). The result 
is that we obtain different types of interactions dependent on the signs of si. If 
s1 = s2 = s3 = 1 we obtain explosive interactions (see for example Engelmann and 
Wilhelmsson 1969) while if -sl = s2 = s3 = 1 the interaction is an up-conversion 
process and -s l  = - s 2  = s3 = 1 is a down-conversion process. If we linearize by 
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assuming that the a3 field is so large that i t  may be assumed to be constant and described 
by a c number we obtain 

with solutions (y = y* for simplicity) 

u l , o  coshJ(s,s,):lt+i 

al ,o sinh J(s,s,)yt 
U;,, cosh,~(s,s,);~t-i( 112 

If we, like Louisell et a1 (1961), consider interaction between cavity modes due to a 
modulated dielectric medium: we have s = sign w and with w1 + w2 + w 3  = 0 ;  
-s l  = s2 = s3 = 1, that is lo1/ = /w2/  + Iw3/. For an exact knowledge of the number of 
input photons n, ,  and n 2 ,  we obtain 

n l ( t )  = (ala:) = n I o  cos2 yt+n,, sin2 y t  

n 2 ( t )  = (a ;a2 )  = n 2 ,  cos2 y t + n l o  sin' yr. 

On the other hand if -s l  = -s2 = s j  = 1, that is Iw3/ = IwlJ +/w,(, we obtain 

n,(t)  = (ala:) = n , ,  coshZyt+(n2,+ 1)sinh2 y t  

n,(t) = (a,a:) = n,, cosh yt+(n,,+ 1) sinh' ; i t .  

In the first case we have a frequency conversion with n ,  + n 3  fixed while in the second 
case we have amplification with n ,  + n 3  increasing due to  the pump wave a 3 .  

The final results are in agreement with Louisell et al(1961). Due to the above treat- 
ment we can, however, conclude that in any linear interaction we will find the same final 
results which means that active amplification can be stimulated by zero point noise. This 
is not the case for the passive conversion case. 

Appendix 

We consider a general quadratic or bilinear Lagrangian given by 

Assuming 

4 4 ,  z) = 2 (Qik eikz + Q: e-ikz) (A2) 
k 

with the time dependence of Qik given by exp( -iiokt) where wk = -w-k we obtain 
,. 
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with 

which is the case for loss-free media. Variation with respect to Q i  and Qjk yields re- 
spectively 

C % , j , k Q i k  = 0 1 y z j , k Q i + k  = 0. (A61 

Q i k  = b Q k  (A7) 

i i 

From these relations we can express Qik in one of the amplitudes which we denote Qk 

and we then obtain from (A6) the dispersion relation 

1 yi, j ,kAi,k = O* 
i 

We introduce d p k  by 

and can then write (A3) 

in agreement with (6) .  The momentum is given by 

and the Hamiltonian by 

From (Al) we obtain after integration over unit length 

Expressing Qik and Qjk in terms o f  Q k  we obtain 

f H dz = a 1 .yi"k(QkQ: + Q: Q k )  
k 
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with 

*k = 1 & , j , k A i , k A z k  
i . j  

We then find from (A9) (AS), and (A15) that 

in agreement with (9). It should be noted that w k  and k are considered as independent 
variables. 

With the symmetries assumed we obtain y k  = 9 - and Xk = X - k .  From (A10) and 
(A16) and with Qk = Q r k  we realise that we obtain the same result for summation over 
positive k as over negative k .  

Although the derivation starts from an averaged Lagrangian quantity the important 
quantity may as well be obtained directly from the differential equations if we include 
an external source term for normalization of 6pk( r+ ,  k)(cf Askne 1972). 
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